Tag Archives: screw making

China manufacturer 22kw 30HP VSD Permanent Magnetic Frequency Screw Air Compressor for Facial Mask Making Machine 12v air compressor

Product Description

Oilless High Pressure Rotary Portable Mini Industrial Used Movable Single Max Dental AC Oil Screw Part Parts Piston Free Air Pump Compressor

OIL-INJECTED FIXED SPEED COMPRESSOR

 

Model Motor Power
kW / hp
Free Air Delivery
m3/min
Noise Level
dB(A)
Dimension
L * W * H
mm
Weight
Kg
7barg 8barg 10barg 13barg
CWD7 7.5 / 10 1.3 1.2 1.0 0.8 66 880*700*920 240
CWD11 11 / 15 1.7 1.6 1.4 1.2 68 1080*750*1000 400
CWD15 15 / 20 2.5 2.3 2.1 1.9 68 1080*750*1000 420
CWD18 18.5 / 25 3.2 3.0 2.7 2.4 68 1280*850*1160 550
CWD22 22 / 30 3.8 3.6 3.2 2.8 68 1280*850*1160 580
CWD30 30 / 40 5.3 5.0 4.5 4.0 68 1280*850*1160 600
CWD37 37 / 50 6.8 6.2 5.6 5.0 68 1400*1000*1290 800
CWD45 45 / 60 8.0 7.3 7.0 5.9 72 1400*1000*1290 850
CWD55 55 / 75 10.1 9.5 8.7 7.8 72 1800*1230*1570 1660
CWD75 75 / 100 13.6 12.8 12.3 10.2 72 1800*1230*1570 1800
CWD90 90 / 125 16.2 15.5 14.0 12.5 72 1800*1230*1570 1900
CWD110 110 / 150 21.2 19.8 17.8 15.5 72 2400*1470*1840 2500
CWD132 132 / 180 24.5 23.2 20.5 17.8 75 2400*1470*1840 2700
CWD160 160 / 215 28.8 27.8 25.0 22.4 75 2400*1470*1840 3000
CWD185 185 / 250 32.5 31.2 28.0 25.8 75 3150*1980*2150 3500
CWD200 200 / 270 36.0 34.3 30.5 28.0 82 3150*1980*2150 4000
CWD250 250 / 350 43.0 41.5 38.2 34.9 82 3150*1980*2150 4500
CWD315 315 / 400 51.0 50.2 44.5 39.5 82 3150*1980*2150 6000
CWD355 355 / 450 64.0 61.0 56.5 49.0 84 3150*1980*2150 6500
CWD400 400 / 500 71.2 68.1 62.8 52.2 84 3150*1980*2150 7200

Model Motor Power
kW / hp
Free Air Delivery
m3/min
Noise Level
dB(A)
Dimension
L * W * H
mm
Weight
Kg
7barg 8barg 10barg 13barg
CWD7 PM 7.5 / 10 1.3 1.2 1.0 0.8 66 760*700*920 200
CWD11 PM 11 / 15 1.7 1.6 1.4 1.2 68 980*750*1000 350
CWD15 PM 15 / 20 2.5 2.3 2.1 1.9 68 980*750*1000 360
CWD18 PM 18.5 / 25 3.2 3.0 2.7 2.4 68 1120*850*1160 500
CWD22 PM 22 / 30 3.8 3.6 3.2 2.8 68 1120*850*1160 520
CWD30 PM 30 / 40 5.3 5.0 4.5 4.0 68 1120*850*1160 550
CWD37 PM 37 / 50 6.8 6.2 5.6 5.0 68 1280*1000*1290 750
CWD45 PM 45 / 60 8.0 7.3 7.0 5.9 72 1280*1000*1290 780
CWD55 PM 55 / 75 10.1 9.5 8.7 7.8 72 1800*1230*1570 1600
CWD75 PM 75 / 100 13.6 12.8 12.3 10.2 72 1800*1230*1570 1800
CWD90 PM 90 / 125 16.2 15.5 14.0 12.5 72 1800*1230*1570 1900
CWD110 PM 110 / 150 21.2 19.8 17.8 15.5 72 2400*1470*1840 2500
CWD132 PM 132 / 180 24.5 23.2 20.5 17.8 75 2400*1470*1840 2700
CWD160 PM 160 / 215 28.8 27.8 25.0 22.4 75 2400*1470*1840 3000
CWD185 PM 185 / 250 32.5 31.2 28.0 25.8 75 3150*1980*2150 3500
CWD200 PM 200 / 270 36.0 34.3 30.5 28.0 82 3150*1980*2150 4000
CWD250 PM 250 / 350 43.0 41.5 38.2 34.9 82 3150*1980*2150 4500
CWD315 PM 315 / 400 51.0 50.2 44.5 39.5 82 3150*1980*2150 6000
CWD355 PM 355 / 450 64.0 61.0 56.5 49.0 84 3150*1980*2150 6500
CWD400 PM 400 / 500 71.2 68.1 62.8 52.2 84 3150*1980*2150 7200

TWO-STAGE OIL-INJECTED COMPRESSOR
 

Model Motor Power
kW / hp
Free Air Delivery
m3/min
Noise Level
dB(A)
Dimension
L * W * H
mm
Weight
Kg
7barg 8barg 10barg 13barg
CWD15-2S 15 / 20 3.0 2.9 2.4 2.2 68 1480*850*1180 780
CWD18-2S 18.5 / 25 3.6 3.5 2.9 2.5 68 1480*850*1180 800
CWD22-2S 22 / 30 4.2 4.1 3.5 3.2 68 1480*850*1180 820
CWD30-2S 30 / 40 6.5 6.4 4.9 4.2 68 1720*1110*1480 1080
CWD37-2S 37 / 50 7.2 7.1 6.3 5.4 68 1720*1110*1480 1100
CWD45-2S 45 / 60 9.8 9.7 7.8 6.5 72 1720*1110*1480 1120
CWD55-2S 55 / 75 12.8 12.5 9.6 8.6 72 2100*1350*1720 2080
CWD75-2S 75 / 100 17.5 16.5 12.5 11.2 72 2100*1350*1720 2100
CWD90-2S 90 / 125 20.8 19.8 16.9 14.3 72 2460*1700*1900 3280
CWD110-2S 110 / 150 24.5 23.5 19.7 17.6 72 2460*1700*1900 3480
CWD132-2S 132 / 180 30.0 28.0 23.5 19.8 75 2900*1800*2571 3980
CWD160-2S 160 / 215 34.5 33.6 30.0 23.8 75 2900*1800*2571 4280
CWD185-2S 185 / 250 41.0 38.4 32.5 28.6 75 3800*1980*2150 5450
CWD200-2S 200 / 270 44.6 43.0 38.5 32.8 82 3800*1980*2150 5600
CWD220-2S 220 / 300 48.6 47.0 41.0 38.0 82 3800*1980*2150 6500
CWD250-2S 250 / 350 55.0 54.0 46.0 40.0 82 3800*1980*2150 6600

  • Unit measured according to ISO 1217, Annex C, Edition 4 (2009)

Reference conditions:
-Relative humidity 0%
-Absolute inlet pressure: 1 bar (a) (14.5 psi)
-Intake air temperature:  20°C, 68°F

  • Noise level measured according to ISO 2151:2004, operation at max. operating pressure and max. speed; tolerance: ±3 dB(A)
  • 2S-Two Stage


FAQ

1. Q: Are you a factory or trading company?

  A: We are a factory.  
2. Q: What’re your payments ? 

   A: T/T,Western Union,L/C etc.
 3. Q: What about the package ?

  A: Standard export plywood case or carton.
4. Q: How long is the warranty ?

  A: According to international standards, products in standard operation is 1 year,except quick-wear part.
5. Q: The use of products have?

   A: The pump can suck the peanut, pickles, tomato slurry, red sausage, chocolate, hops and syrup etc.

   The pump can suck the paint, pigment, glue and adhesive etc.

  The pump can suck various glazed slurries of tile, porcelain, brick and chinaware etc.

  The pump can suck various toxin and flammable or volatility liquid etc.

  The pump can suck various strong acid, alkali and corrosive liquid etc.

After-sales Service: Oversea Install Service
Warranty: 3
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Customization:
Available

|

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China manufacturer 22kw 30HP VSD Permanent Magnetic Frequency Screw Air Compressor for Facial Mask Making Machine   12v air compressorChina manufacturer 22kw 30HP VSD Permanent Magnetic Frequency Screw Air Compressor for Facial Mask Making Machine   12v air compressor
editor by CX 2023-12-06